Evidens för tester i domänen uppmärksamhet och tempo

I denna artikel presenteras de forskningsartiklar som ligger till grund för de tester som ingår i Mindmore och som faller under den primära domänen 'uppmärksamhet och tempo'.

Reaktionshastighet: 

•        Burton, C. L., Strauss, E., Hultsch, D. F., Moll, A., and Hunter, M. A. (2006). Intraindividual variability as a marker of neurological dysfunction: a comparison of Alzheimer's disease and Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 28(1), 67–83. https://doi.org/10.1080/13803390490918318 
•        Deary, I. J. and Der, G. (2005). Reaction time, age, and cognitive ability: longitudinal findings from age 16 to 63 years in representative population samples aging, neuropsychology, and cognition. A Journal on Normal and Dysfunctional Development, 12(2), 187-215. https://doi.org/10.1080/13825580590969235  
•        Dykiert, D., Der, G., Starr, J. M., and Deary, I. J. (2012). Age differences in intra-individual variability in simple and choice reaction time: systematic review and meta-analysis. PLOS ONE, 7(10), e45759. https://doi.org/10.1371/journal.pone.0045759   
•        Nissan, J., Liewald, D., and Deary, I. J. (2013). Reaction time and intelligence: comparing associations based on two response modes. Intelligence, 41(5), 622–630. https://doi.org/10.1016/j.intell.2013.08.002  
•        Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428. https://doi.org/10.1037/0033-295X.103.3.403  
•        Stuss, D. T., Pogue, J., Buckle, L., and Bondar, J. (1994). Characterization of stability of performance in patients with traumatic brain injury: Variability and consistency on reaction time tests. Neuropsychology, 8(3), 316–324. https://doi.org/10.1037/0894-4105.8.3.316
•        Woods, D. L., Wyma, J., Yund, E. W., Herron, T. J., and Reed, B. (2015). The effects of aging on visual choice reaction time. Frontiers in Human Neuroscience, 23(9),193. https://doi.org/10.3389/fnhum.2015.00193  

Continuous Performance Test - CPT:
•        Dougherty, D. M., Marsh, D. M., and Mathias, C. W. (2002). Immediate and Delayed Memory Tasks: A computerized measure of memory, attention, and impulsivity. Behavior Research Methods, Instruments, and Computers, 34, 391-398.  https://doi.org/10.3758/BF03195467  
•        Homack, S., and Riccio, C. (2006). Conners’ Continuous Performance Test (2nd ed., CCPT-II). Journal of Attention Disorders, 9(3), 556-558. https://doi.org/10.1177/1087054705283578  
•        Epstein, J. N., Erkanli, A., Conners, C. K., Klaric, J., Costello, J. E. and Angold, A. (2003). Relations Between Continuous Performance Test Performance Measures and ADHD Behaviors. Journal of Abnormal Child Psychology, 31, 543–554. https://doi.org/10.1023/A:1025405216339 
•        Levy, F., Pipingas, A., Harris, E. V., Farrow, M., and Silberstein, R. B. (2018). Continuous performance task in ADHD: Is reaction time variability a key measure? Neuropsychiatric Disease and Treatment, 2018 (14), 781-786. https://doi.org/10.2147/NDT.S158308   
•        Rosvold, H. E., Mirsky, A. F., Sarason, I., Bransome, E. D., Jr., and Beck, L. H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20(5), 343–350. https://doi.org/10.1037/h0043220  

Paced Auditory Verbal Learning Test - PASAT: 
•        Diehr, M. C., Heaton, R. K., Miller, W., and Grant, I. (1998). The Paced Auditory Serial Addition Task (Pasat): norms for age, education, and ethnicity. Assessment, 5(4), 375-387.  https://doi.org/10.1177/107319119800500407   
•        Drake, A.S., Weinstock-Guttman, B., Morrow, S.A., Hojnacki, D., Munschauer, F.E. and Benedict, R.H.B. (2010). Psychometrics and normative data for the Multiple Sclerosis Functional Composite: replacing the PASAT with the Symbol Digit Modalities Test. Multiple Sclerosis, 16(2), 228–237. https://doi.org/10.1177/1352458509354552   
•        Gronwall, D. M. (1977). Paced auditory serial-addition task: a measure of recovery from concussion. Perceptual and Motor Skills, 44(2), 367–373. https://doi.org/10.2466/pms.1977.44.2.367 
•        Matias-Guiu, J. A., Cortés-Martínez, A., Montero, P., Pytel, V., Moreno-Ramos, T., Jorquera, M., Yus, M,, Arrazola, J., and Matías-Guiu, J. Structural MRI correlates of PASAT performance in multiple sclerosis. BMC Neurology, 18(1), 214. https://doi.org/10.1186/s12883-018-1223-0 
•        Park, N. D., Moscovitch, M. and Robertson, I. H. (1999). Divided attention impairments after traumatic brain injury. Neuropsychologia, 37,1119-1133. https://doi.org/10.1016/S0028-3932(99)00034-2 
•        Rosti, E., Hämäläinen, P., Koivisto, K., and Hokkanen, L. (2006). The PASAT performance among patients with multiple sclerosis: analyses of responding patterns using different scoring methods. Multiple Sclerosis Journal,12(5), 586-93. https://doi.org/10.1177/1352458506070624
•        Tanosoto, T., Bendixen, K. H., Arima, T., Hansen, J , Terkelsen, A.J., and Svensson, P. (2015). Effects of the Paced Auditory Serial Addition Task (PASAT) with different rates on autonomic nervous system responses and self-reported levels of stress. Journal of Oral Rehabilitation, 42(5), 378–385. https://doi.org/10.1111/joor.12257  
•        Tombaugh, T.N. (2006). A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Archives of Clinical Neuropsychology, 21(1), 53–76. https://doi.org/10.1016/j.acn.2005.07.006 
•        Wingenfeld, S.A., Holdwick Jr., D.J., Davis, J.L. and Hunter, B.B. (1999). Normative Data on Computerized Paced Auditory Serial Addition Task Performance. The Clinical Neuropsychologist, 13(3), 268-273. https://doi.org/10.1076/clin.13.3.268.1736  

Trail-making-test - TMT (CTMT): 
•        Army Individual Test Battery. (1944). Manual of Directions and Scoring. Washington, 331, DC: War Department, Adjutant General’s Office.
•        Choi, S. Y., Lee, J. S and Oh, Y. J. (2016). Cut-off point for the trail making test to predict unsafe driving after stroke. Journal of Physical Therapy Science, 28(7), 2110–2113. https://doi.org/10.1589/jpts.28.2110  
•        Delgado-Alonso, C., Valles-Salgado, M., Delgado-Álvarez, A., Yus, M., Gómez-Ruiz, N., Jorquera, M., Polidura, C., Gil, M. J., Marcos, A., Matías-Guiu, J., and Matías-Guiu, J. A. (2022). Cognitive dysfunction associated with COVID-19: A comprehensive neuropsychological study. Journal of psychiatric research, 150, 40–46. https://doi.org/10.1016/j.jpsychires.2022.03.033   
•        Ferrando, S. J., Dornbush, R., Lynch, S., Shahar, S., Klepacz, L., Karmen, C. L., Chen, D., Lobo, S. A., and Lerman, D. (2022). Neuropsychological, medical, and psychiatric findings after recovery from acute COVID-19: A Cross-sectional Study. Journal of the Academy of Consultation-Liaison Psychiatry, 63(5), 474-484, https://doi.org/10.1016/j.jaclp.2022.01.003  
•        Mahurin, R. K., Velligan, D.I., Hazleton, B., Mark Davis, J., Eckert, S., and Miller, A.L. (2006) Trail making test errors and executive function in schizophrenia and depression. The Clinical Neuropsychologist, 20(2), 271-88. https://doi.org/10.1080/13854040590947498  
•        Oades, R. D., & Christiansen, H. (2008). Cognitive switching processes in young people with attention-deficit/hyperactivity disorder. Archives of clinical neuropsychology: the official journal of the National Academy of Neuropsychologists, 23(1), 21–32. https://doi.org/10.1016/j.acn.2007.09.002 
•        Salthouse, T. A. (2011). What cognitive abilities are involved in trail-making performance? Intelligence, 39(4), 222–232. https://doi.org/10.1016/j.intell.2011.03.001  
•        Tamez, E., Myerson, J., Morris, L., White, D.A., Baum, C and Tabor Connor, L. (2011). Assessing executive abilities following acute stroke with the trail making test and digit span. Behavioural Neurology, 24(3), 177-185. https://doi.org/10.3233/BEN-2011-0328  
•        Tombaugh, T.  N., (2004). Trail Making Test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203–214. https://doi.org/10.1016/S0887-6177(03)00039-8  
•        Woods, D. L., Wyma, J. M., Herron, T. J. and Yund, E. W. (2015). The effects of aging, malingering, and traumatic brain injury on computerized trail-making test performance. PLOS ONE, 10(6), e0124345.  https://doi.org/10.1371/journal.pone.0124345  


The Symbol Digit Modalities Test (SDMT) - i Mindmore: Symbol digit processing test - SDPT
•        Diamond, B. J., Johnson, S. K., Kaufman, M. and Graves, L. (2008). Relationships between information processing, depression, fatigue and cognition in multiple sclerosis. Archives of Clinical Neuropsychology, 23(2), 189-199. https://doi.org/10.1016/j.acn.2007.10.002  
•        Fellows, R. P., and Schmitter-Edgecombe, M. (2019). Symbol Digit Modalities Test: regression-based normative data and clinical utility. Arch Clin Neuropsychol. 24,35(1), 105-115. https://doi.org/10.1093/arclin/acz020  
•        Patel, V. P., and Feinstein, A. (2019). The link between depression and performance on the Symbol Digit Modalities Test: Mechanisms and clinical significance. Multiple Sclerosis Journal, 25(1), 118-121. https://doi.org/10.1177/1352458518770086    
•        Sandry, J., Simonet, D.V., Brandstadter, R., Krieger, S., Sand, I., Graney, R., Buchanan, A., Lall, S., and Sumowski, J. (2021). The Symbol Digit Modalities Test (SDMT) is sensitive but non-specific in MS: Lexical access speed, memory, and information processing speed independently contribute to SDMT performance. Multiple Sclerosis and Related Disorders, 51, 102950. https://doi.org/10.1016/j.msard.2021.102950  
•        Smith, K. R., Moran, T. H., Papantoni, A., Speck, C., Bakker, A., Kamath, V., Carnell, S., and Steele, K. E. (2020). Short-term improvements in cognitive function following vertical sleeve gastrectomy and Roux-en Y gastric bypass: a direct comparison study. Surgical endoscopy, 34(5), 2248–2257. https://doi.org/10.1007/s00464-019-07015-2   
•        Tung, L. C., Yu, W. H., Lin, G. H., Yu, T. Y., Wu, C. T., Tsai, C. Y., Chou, W., Chen, M. H., and Hsieh, C. L. (2016). Development of a Tablet-based symbol digit modalities test for reliably assessing information processing speed in patients with stroke. Disability and Rehabilitation, 38(19),1952-60.  https://doi.org/10.3109/09638288.2015.1111438  
•        Vu, T., and Smith, J. A. (2022). An Update on Postoperative Cognitive Dysfunction Following Cardiac Surgery. Frontiers in psychiatry, 13, 884907. https://doi.org/10.3389/fpsyt.2022.884907      
•        Zhang, J. Y., and Feinstein, A. (2016). Screening for cognitive impairments after traumatic brain injury: a comparison of a brief computerized battery with the Montreal cognitive assessment. The Journal of Neuropsychiatry and Clinical Neurosciences, 28, 328–331.  https://doi.org/10.1176/appi.neuropsych.16010005